Basic properties and examples

  • convex: $f(\theta x+(1-\theta)y)\le \theta f(x)+(1-\theta)f(y)$ for all $x,y \in \mathbf{dom} f$ and $0 \le \theta \le 1$
  • strictly convex: $f(\theta x+(1-\theta)y)< \theta f(x)+(1-\theta)f(y)$ whenever $x \ne y$ and $0 <\theta < 1$
  • concave: if $-f$ is convex
  • strictly concave: if $-f$ is strictly convex
  • affine functions are both convex and concave
  • $f$ is convex $ \Leftrightarrow$ $g(t)=f(x+tv)$ for ${ t x+tv\in \mathbf{dom} f}$ is convex
  • Extend-value extension(扩展值延伸)
    • $\tilde f(x) = \left{ \begin{array}{ll} f(x) & x \in \mathbf{dom}f
      \infty & x \notin \mathbf{dom}f \end{array} \right.$
    • concave function is to be $- \infty$ outside its domain
  • First order condition
    • $f(y)\ge f(x)+\nabla f(x)^T(y-x)$
    • global underestimator(全局下估计)
  • Second order condition
    • $\nabla^2f(x)\succeq 0$
  • Examples
    • Every norm on $R^n$ is convex
    • $f(x)=\max{x_1,…,x_n}$ is convex on $R^n$
    • $f(x,y=x^2/y)$ with $\mathbf{dom} f =R\times R_{++}={(x,y)\in R^2 y >0}$ is convex
    • $f(x)=\log (e^{x_1}+\cdots +e^{x_n})$ is convex on $R^n$
    • $f(x)={\left( {\prod\nolimits_{i = 1}^n } \right)^{1/n}}$ is concave on $\mathbf{dom} f=R^n_{++}$(Geometric mean)
    • $f(\mathbf{X})=\log \det\mathbf{X}$ is concave on $\mathbf{dom} f=S^n_{++}$ (Log-determinant)
  • Sublevel sets(下水平集)
    • $C_\alpha={x\in \mathbf{dom} f f(x)\le \alpha}$
  • Epigraph(上境图)
    • $\mathbf{epi}f ={(x,t) x\in \mathbf{dom}f,f(x)\le t}$
    • A function is convex if and only if its epigragh is a convex set.
    • hypograph for concave function
      • $\mathbf{hypo}f ={(x,t) t\le f(x)}$
  • Jensen’s inequality and extensions
    • $f(\theta x+(1-\theta)y)\le\theta f(x)+(1-\theta) f(y)$
    • $f(\theta_1 x_1+\cdots+\theta_kx_k)\le\theta_1 f(x_1)+\cdots+\theta_k f(x_k)$ for $f$ is convex, $x_1,…,x_k\in \mathbf{dom}f$, $\theta_1,…,\theta_k>0$ and $\theta_1+\cdots+\theta_k=1$
    • $f(\mathbf{E}x)\le\mathbf{E}f(x)$
    • $\sqrt{ab}\le(a+b)/2$
    • $a^\theta b^{1-\theta}\le \theta a+(1-\theta)b$
  • Cauchy-Schwarz inequality: $(a^Ta)(b^Tb)\ge(a^Tb)^2$

Operations that preserve convexity

  • Nonnegative weighted sums
    • $f=w_1f_1+\cdots+w_mf_m$
    • $g(x)=\int_\mathcal{A} {\ w(y)f(x,y){\rm{d}}y}$
    • if $w\ge0$ and $f$ is convex, $\mathbf{epi}(wf)=\left[ {\begin{array}{*{20}{c}} {I}&0\0&w\end{array}} \right] \mathbf{epi}\ f$
  • Affine mapping
    • $g(x)=f(Ax+b)$, where$f:R^n \rightarrow R, A\in R^{n\times m},b \in R^n \Rightarrow g:R^m \rightarrow R$
  • Pointwise maximum and supremum
    • $f(x)=\max{f_1(x),\dots,f_m(x)}$
    • $g(x)={\rm sup}_{y\in \mathcal{A}}f(x,y)$
    • almost every convex function can be expressed as the pointwise supremum of a family of affine functions. $f(x) = {\rm sup} {g(x) | g {\rm \ affine}, g(z) ≤ f(z) for all z }$

$W=\mathbf{diag} (w)$ 是把向量$w$转换成对角线矩阵$W$

  • Composition (复合函数)
    • $f(x)=h \circ g=h(g(x))$
    • $f$ is convex if $h$ is convex, $ \tilde h$ is nondecreasing, and $g$ is convex
    • $f$ is convex if $h$ is convex, $ \tilde h$ is nonincreasing, and $g$ is concave,
    • $f$ is concave if $h$ is concave, $ \tilde h$ is nondecreasing, and $g$ is concave,
    • $f$ is concave if $h$ is concave, $ \tilde h$ is nonincreasing, and $g$ is convex.
  • Vector composition(矢量复合)
    • $f(x) = h(g(x)) = h(g_1(x), . . . , g_k(x))$
    • $f$ is convex if $h$ is convex, $h$ is nondecreasing in each argument, and $g_i $are convex, $f$ is convex if $h$ is convex, $h$ is nonincreasing in each argument, and $g_i$ are concave, $f$ is concave if $h$ is concave, $h$ is nondecreasing in each argument, and $g_i$ are concave.
  • Minimization
    • $g(x)\mathop {\inf }\limits_{y\in C} f(x,y)$
  • Perspective of a function
    • $g(x,t)=tf(x/t), g:R^{n+1} \rightarrow R$

The conjugate function( 共轭函数)

$f^*(y)=\mathop{\rm sup}\limits_{x\in \mathbf{dom}f} (y^Tx-f(x))$

  • $f^*$ is a convex function

Basic properties

  • *Fenchel’s inequality: ** $f(x)+f^(y) \ge x^Ty$
  • $f^{**}=f$
  • Differentiable functions——Legendre transform
    • $f^(y)=x^{T} \nabla f(x^)-f(x^)$, where $x^*$ maximizes $y^Tx-f(x)$
  • Scaling and composition with affine transformation
    • $g(x)=af(x)+b$ $g^(y)=af^(y/a)-b$
    • $g(x)=f(Ax+b)$ $g^(y)=f^(A^{-T}y)-b^TA^{-T}y$
  • Sums of independent functions
    • $f(u,v)=f_1(u)+f_2(v)$ $f^(w,z)=f_1^(w)+f_2^*(z)$